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this fast hybrid (FH) regime concern the behavior of
microinstablilities on the lower-hybrid or slower timdil™ ONA},
scale. Some remnants of electron {inertia must be
retained in order to correctly wmodel composite

Summary
Multi-dimensional hybrid eimulation modela have
been developed for use in studying plasma phenomena on
extanded time and distance scales. The models make

fundamental use of the =smal]l] Debye length or
quari-neutrality assumption. The 1lons are modeled by
parcicle-in-cell (PIC) techniques while the electrous
are considered & collision-dominated fluid. The
fields are calculated in the nonradiative Darwin
limit. Some electron inertial effects are retained in
the Finite Electron Mass model (FEM). In this model,
the quasi-neutral counterpart of Poisson’s equation is
obtained by firet ©summing the electron and 1{on
momentum equAations and then taking the quasi-ueutral
Hmic. The resulting elliptiec equaiion Zives
ambipolar electrostatic potentials but neglects the
short-range w_ fields. In the Zero Electron Maes
(ZEM) model explicit use is made of the axisymmetric
praperties of the model to decoi.ple the comporents of
the nodel equations. Equations to self-consistently
advance the electron Lemperature have recently been
ajdded to the schewe. The modei equations which result
from these consideratione are two coupled, nonlinear,
second order partial differential equations. These
two equations ure integrated in time by a noniterative
AD1 procedure along with the explicit PIC ion time
integration procedure. The resulting nearly impliicit
electron-field] algorithm treats wide variations in the
local signal velocity without 1inscability; this
congideratfion s most {mportant since arbitrary
intermixing of plasma and pure vacuum regions are
t1lowed.

Introduction

A plasma simulsrion wmethod taht can describe
macroscopic phenomena while 1including particle 1{on
effects in high-B8 plaamas has conaiderable utility in
magnetic fusion research. Of particular {nterest are
plasms phenomena with scale lengths coamparable to 1ion
gyro-radi! on the order of centimeters and time scales
on the order of a few tens of us or longer. Examples
of plasmas with such parameters abound {n high-8
controlied fusion research wirh typical plaog&
parametern ranging between 1012 ¢ 10 3 particles/cm”,
between 50eV and 2 keV for temperaturss, and hetween |
«nd 15 kG for magnetfc fields, 1In this hyhrid regime,
the density, temperatures, and magnetic field are such
that the iona are esaentialiy collisionless and have
orbitas allowing them to experience large varfations in
electromagnetic filelds--requiring a Vlasov treatment
of the {9na. Flectrons experience meny more
collisiona than do iona and/or have relatively small
Larmor o-hfitw. FElectroa behavior {is adequately
modeled am a collimion dominated, thermal fluid.
Mult{dimeus‘unal simulation r® opuch plasmas In the
pant wan reatricted to models deacrilbing only MHD
behavior and did not {nclude all the phyeical effecta
dem{red. Convernely, full elz2ctron and fon
particle-in-cell (PIC) techniquea provide more details
about plamma behavior than are needed for macroscopic
atudiea. What {a needed are hybrid models which
dencribe plasmas with at least two levels of detall
between thear two extreuea.

The flireat level of detail {a still microscopic in
that elfmination of plasma and/or clectron cyclotron
oscillation {m more {mportant than counmiderations of
macroscoplic Reometery. The {wportant queations In

frequencies faster than simple ion oscillationsg.
Several pctentially useful multidimensional
models have been developed for simulation in this FH
regime. These models fall 1into three classes:
implicit ¥IC techniques, hybrid models based upon the
small electron Larmor radius r_,, and hybrid wmodels
based upon the amall Debye Sength AD‘ Implicit
particle methods are the most recent and ambitiocus
methods designed for the FH regime, Such methods will

no aoubt become importart techniques for
microinstability eimulation 1in the future. The
assumption of emall r., {8 ured in electron guiding
center models which work well for low-8 plasma
phenomena dominated by stiong magnetic fields.
Limitations arise for suall magnetic fields in a

high~8 plasma where the more appropriate expansion
parameter e the Debye length XD--equivaIent to
assuming quasi-npeutrality esince plasmas deviate from
charge neutrality only on scale lengths smail compared
to Ap. Our quasi-neutral finite-electron-mass (FEM)
hybrid model! has been designed to operate in this FH
regime. Through eeparation of the electron current
and electric field into iriorational and solenoidal
coanponents, electron plasma oscillations and the
associated time atep restrictions are eliminated from
the model, Other electron inertial effects necemsary
to desciibe most microinstabilities requiring finitc
W., are retained.

In the slow, macroscopic, hybrid regime (SH), the
w., time scale 1s still too restrictive gince there {s
no question that all electron inertial effects can be
neglected. TFis regime requirec a mudel with masnless
fluid electrons and {ions represented by efther a
standard PIC technique or as a finite-mass, thermal
fluid--~the first important non-MHL effects urise from
eimply representing the plasma fl a two component
fluid. The model by Byers et al.” provides an avenu~
into this parameter_ regime--particularly as ex.ended
recently by Harned-”. A difficulty {8 that these
hybrid techniques all require division by denaity In
the electron and field equatfona {in each plaama
computational cell. This feature produces sensfit{vity
to fluctuationa fn regions of low but finite density
and will not describe regiuns with eeru density.
Recently & new method of wsolution for the relevant
cosbination of electron and K6 radiationlers fleld
equations has been developed’. Thim formulation
qreatly reduces the low-denaity=fluctuation problem

having to follov plasma—vacuum interfacen.

ITon Time Advanre
The 1lon plasma component {is repreaented by a
discrete wset of particlen. Asnocinted with each
particle are a mass, a charge, two position
coordinates, and three velocity coordinaten. Ry
appropriately f{altfalizing theme particles in velocity
and position, arbfitrary low-order velocity wmoments of
the fon distribution can he repreaented. The {onu are
advanced in time by stepping forward each particle
with the local self-consistent lLorentr force uaing PIC
techniques. The particle-stepping algorithm’ usen the
following equations which are mecond order accurate in
the tiwe step 4t. FExpilcitly,
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0= 12 h h g0

!l - xO + At v1/2

HT75e h = q At/m, f-l.-(hBO)2/2 lng g=h !—1/2'20/2.
and x are correct to order At At the end of

each time step. the velocity moments, p (density), I

(current), and K,y (divergence of the ion kinetic

tensor), are calculated by averaging over the new

positions and velocities of the particles.

The Finite Electron Masa Hybrid Model

The FEM model makes use of quasi-neutrality and
retaine some aspecis of finite electron maes. The
solencidal part of the electron current J_, retains
finfte electron inertia and is a fundnnentaf part of
the time integration scheme--allowing this model to
dieplay many phenomena that require finite electron
cyclotron frequency Weas In order to eliminate
electron plasma osc{llations, the strong coupling
between the 1irrotational part of the electric field
and the electron current must be removed. The
decovpling is accomplished by obtaining the
{rrotational J, from the quasi-neutral continuity
e!uatlon v zJ +J,) = 0, This equation leads to

VeV = Ve gy w!th g p = - The result ¢ &
procedure which for suitable boundary conditions
determines J.y from J;. The subscript L denotes
{rrotational; the subscript t, used later, denotes

solenofdal. This technique obviates the reed for the
irrotational part of the electron momentum
equation--thus excluding the @strong short-range
c)upllng between J_, and E,.

is advanced explicity {n time by direct
evnluation of the electron momentum equation

] - q 9
de Ke + . ngk + D Je B+ vei(gi + le) (2)
e e
vhere v, fa the electron-ion collisfon frequency and

K, 1s the divergence of the electron kinetic energy
tensor. K, {a obtained by assuming the electron fluid
has the entropy of an {deal gas. After calculation of
the vector fleld Jer Jepr can be obtained by
subtracting the {rrotational part. J,, {s advanced in
time by a second order in At scheme that {e analagous
to the fon scheme equ. (1).

A new techniqu: is required to determine F, (or
equivalently the electrostatic potential ¢) consistent
with the quasi-neutral assumption. Exact charge
neutrality requires the electrostatic field to be
{dentically zero. Quasi-neutrality {mpliea only that
the difference between the ion and electron charge
densitien be everyvhere omall 1in a relative sense.
For thene situationa, & quasi-neutral “Poiseon"
equation can he obtained uaing only the quasi-neutral
continuity and the sum of the electron and f{on

momentum equationa. The resulting ell'ptic equation
ham the form

2
F_,v-(uv.)-v-(x + Ry +uE + 3" B) (M
4n ~ ~ 2 -

vhere u = e2p (l/m’ + 1/m,),
and of courar Fy = -V¢,
The other fields, E

cg = e (11/'1 - !!/‘o)'
and B, are pgenerated in the
Darwin Iimit (In tbo FEM nodel this limit (s
achieved by n-glortlng 'y in Ampere’s law.) Working in
the Coulomb gauge, the vector potential A {a given by
v2a .- B0y (4)
~ c =
vhere B = V x A,
eq. (E) |lv¢|
2, _ 4y
VR “ Jy (5)

Uning the relation E, = —é/c with

vhere ¢2J = K, + Ry + u(Eg + E;) + § x B. The E,
calculation {s eomewhat more complicltod than the
preceding calculation of the magnetic ffeld. It has
been demonstrated that the calculation of E. needs to
be fully implicit in iime> ¢.nce this mode] exhibits
instantaneous propagatiom. To avoid finite
differencing in time, notice that J Jet Vas obtaimed for
use in eq. (5) by summing the i and electron
momentum equations.

One additional complication is that the
quasi-neutral Poisson equation, eq. (3), requires E
88 a source term and the equation for E., eq. OR
Tequires E, a3 a source term. A fully {mpliecit
solution therefore requires iteration over both E, and
E. calculations; 1in practice, only two or three
iterations are required.

Results of the applicario p of this model to the
lower-hybrid-drift instability”'® will be presented.
Shown below are B, contours of r dynamic
lower-hybrid-drift {netability at t=200 w_ . that wvere
simulated with a full ion and electron PIC model,
Fig. 1, compared to the FEM model result, Fig. 2.

‘ QT.)D
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Fig. 2

The Zero Electron Mass Hybrid Model

The basic equations for advancing the
electromagnetic fields in any simulation are ol courge
Maxwell’s equations. However, the ZEM asmumption
provides additional constraints which rnust be utilized
to self-consistently advance the electrorn quantities,
suci' as current J, and temperature T‘, simultanenusly
with the field components. What results {s a mixture
of the electron momentum equatfion and Maxwell's
aqrations which must be advanced in time along with
the 1iun  particle advance. These electron-field
equations are configured for this work to allow nearly
{mplicit time advance of al)l field and electron
quantities in axicymmetric cvlirdrical geometry

In the limit of aemall electron {neriia, the
electron momentum equation s

VoT u, * B
E--— - _“any (6)

ey c

where T, and u, are the electron temperature and drift
velncity, respectively. J is the iotal current and n
1ie the resistivity. Quasi-neutrality im alwo assumed
fn this mode]l so that the electron density {s nearly
aqual to the {ion deneity and both will be denoted hy
the symbol »p.

Ar with the ¥EM model, an {mmediate rcnmequence
of quasi-neutralixy {is that the total current J must
be nearly soienoidal, J2J,. Thip result follows from
the charge continuity equation which, fn the
quasi-neutral limit, {n Ve)_ ¥ - V J . Thia equation
suggests the choice of oqunf and npponitr {rrotational
currents 1.: = -Jyg which {s fully general as lorg nn
thy boundary cond{tlonn on the currentn are <onaistent
with quasi-neutrality.

To coaplete the aet of equsticnm governing the
time advance of electron-field quantiti{es, Lhe
radiation-free or Darwin limit of Ampere’s law
YuB = A%/c ). and Faraday’'e law Vrl, = - 1/c 3B/t
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must be combined with the electron momentum equation
(6). Introducing the magnetic vector potentlal A in
the Coulomb gauge, equation (6) takes the form

. 2 ’ 3(!‘Ae) aAB

Ag - %;-“Vzéle + ugr %'-3;—‘-+ Uez 37 = O N
where axisymmetry I een exploited for Eg;=0. Ag
and, consequently B/ 'd B,, are advanced ir time
using this equation wii u,. and u,, goming from the
curl of Bpeg, P, Uyy, 8L uy,. The B3 equation can
be obtained by first taking the curl of equation (6)
and then replacing V“E with B from Faraday’s law. The
f~component of the reuulting ¢ |uation is

Bp - S [3_ n ififﬁl 2, 132
€ ir r ar az oz

3 9
+ —a—r [uer BB] + 3_2 [uez Be]

ep Vs | dugg
ar r LT

c (9p e ap e
AR T T e @
To complete this model, a mechanism for advancing

To which can proceed along with the other tiae
integration procedures is required. A procedure has
recently been ceveloped that provides nearly correct
cross field conduction and still a nonphysically low
but scmewhat realistic parallel conductivity that fis
between 102 and 103 larger than the cross-field
conduction. This procedure and eqse. (7) and (8) thus
comprise a set of coupled nonlinear
partial-different{al equations which can be used to
advance the magnetic field in time along with the
associated electron current.

Regions of Small or Zero Denaf{ty in the ZEM

The most common dlfflcu]ty with codes of thinm
tvpe are low densfty fluctuations. Denpity
fluctuations always occur due to the atochastic nature
of PIC simulation. Low denaity fluctuations produce
sapikes in denm{ty-dependent signal velocities which
can excerd the local stability 1imit causing the
simulation to terminate. In our method, a density
cutoff 18 introduced to put limits on theme signal
velocities in the plasma. Thove cells whose density
{r below this threshold are considered pure vacuum
cella--not cells filled with cold background
density--so that the proper nearly '"instanteous'
vacuum asignal velocitien are achieved. This creatcs a
disparity in signal velocities {n adjscent cells that
introduces an overvhelmiug time step conatrafint In
expllicit coden. Coneequently, the field advance wmust
be lmplicit to some degree. Du~ to the explicit time
integration of the lon component, a time step
reatriction {a already {mposed on the esimulatiun
model. Thus, no advantage i{s gained by requiring the
field calculaciona to be fully implicit. Our f{eld
equations Are advanced in time semi-implicitly with
noniterative ADI &80 that unwanted high frequencien
decay exponentially with time. A cutoff is imposed
that {a consiatent with the At constralint resulting
from the explicit fon time advance. Practically, the
cutoff value {a such that all but two or three percent

of the particles are included in "plasma" cella, The
firat use of the cutoff concept 1is found in the
equationn for u,

c
T A ®

4rep -~

where the second term {n ighored 1f 0 {n leas thsn the
cutof{ value,

The density cutoff wmust also be considered in
eqs. (7) and (8). Monitoring the plasma-vacuum

interfaces ‘n these equatfons would, in highly
turbulent situations, become too time consuming.
Fortunately, with the exception of eq. (9), the

implicit time advance of the electron-field equatione
removes the need for separate treatments of
plasma-vacuum regions. Equations (7) and (B)
automatically respond with the appropriate physice in
region! of iow or zero dengity by setting n to a large

x 10'9) value 1in any cell in which the
dega ty dropes below the cutoff value--eliminating any
restrictions on the position or number of
plasma-vacuum interfaces.

The total E field in finite density cells 1s now
calculated from equation (6) using the newly updated B
field and “e' The field calculations are completed by
solving V2 E = 0 in the vacuum region.

Examplea of ZEM Simulations
The ZEM model has been used to lnvestlgnte the
properties of magnetic reconnection in field reverse9
configurations such as the FRX serier 1in Los Alamos.
Shown below are magnetic flux ccntours at two
different times during a eéimulation r. FRX formation.

t=0.2 us

t=0.4 w8

= ‘!

Renults and further details will be presented.
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